# PVS Linear Algebra Libraries for Verification of Control Software Algorithms in C/ACSL

Heber Herencia-Zapana, Romain Jobredeaux, Sam Owre. Pierre-Loïc Garoche. Eric Feron. Gilberto Perez. **Ascariz** 

> National Institute of Aerospace, Georgia Institute of Technology SRI International, ONERA, University of A Coruña

> > April, 2012

- Introduction
- Stability and correctness
- Defining quadratic invariants as code annotations
- **Verification conditions**
- Mapping ACSL predicates to PVS linear algebra concepts
- **Conclusions**

- The objective of control theory is to calculate a proper action from the controller that will result in stability for the system
- The software implementation of a control law can be inspected by analysis tools
- However these tools are often challenged by issues for which solutions are already available from control theory.

Stability and correctness

Introduction

- The objective of control theory is to calculate a proper action from the controller that will result in stability for the system
- The software implementation of a control law can be inspected by analysis tools
- However these tools are often challenged by issues for which solutions are already available from control theory.

Stability and correctness

Introduction

- The objective of control theory is to calculate a proper action from the controller that will result in stability for the system
- The software implementation of a control law can be inspected by analysis tools
- However these tools are often challenged by issues for which solutions are already available from control theory.

- The objective of control theory is to calculate a proper action from the controller that will result in stability for the system
- The software implementation of a control law can be inspected by analysis tools
- However these tools are often challenged by issues for which solutions are already available from control theory.

- Program verification uses proof assistants to ensure the validity of user-provided code annotations.
- These annotations may express the domain-specific properties of
- However, formulating annotations correctly is nontrivial in practice.

- Program verification uses proof assistants to ensure the validity of user-provided code annotations.
- These annotations may express the domain-specific properties of the code.
- However, formulating annotations correctly is nontrivial in practice.
- By correctly, we mean that the annotations formulate stability properties of an intended mathematical interpretation from control theory.

- These annotations may express the domain-specific properties of the code.
- However, formulating annotations correctly is nontrivial in practice.

- Program verification uses proof assistants to ensure the validity of user-provided code annotations.
- These annotations may express the domain-specific properties of the code.
- However, formulating annotations correctly is nontrivial in practice.
- By correctly, we mean that the annotations formulate stability properties of an intended mathematical interpretation from control theory.

#### In order to solve these two challenges this work proposes

- Axiomatization of Lyapunov-based stability as C code annotations,
- 2 Implementation of linear algebra and control theory results in PVS.

In order to solve these two challenges this work proposes

- Axiomatization of Lyapunov-based stability as C code annotations,
- 2 Implementation of linear algebra and control theory results in PVS.

## Stability and Correctness

 The basic module for the description of a controller can be presented as

$$\xi(k+1) = f(\xi(k), \nu(k)), \ \xi(0) = \xi_0$$
  
 $\zeta(k) = g(\xi(k), \nu(k))$ 

where  $\xi \in \mathbb{R}^n$  is the state of the controller,  $\nu$  is the input of the controller and  $\zeta$  is the output of the controller.

ullet This system is bounded-input, bounded state stable if for every  $\epsilon$ 

# Stability and Correctness

 The basic module for the description of a controller can be presented as

$$\xi(k+1) = f(\xi(k), \nu(k)), \ \xi(0) = \xi_0$$
  
 $\zeta(k) = g(\xi(k), \nu(k))$ 

where  $\xi \in \mathbb{R}^n$  is the state of the controller,  $\nu$  is the input of the controller and  $\zeta$  is the output of the controller.

ullet This system is bounded-input, bounded state stable if for every  $\epsilon$ there exists a  $\delta$  such that  $||\nu(k)|| \leq \epsilon$  implies  $||\xi(k)|| \leq \delta$ , for every positive integer k.

- If there exists a positive definite function V such that  $V(\xi(k)) \leq 1$ implies  $V(\xi(k+1)) \le 1$  then this function can be used to establish the stability of the system.
- This Lyapunov function, V, defines the ellipsoid  $\{\xi \mid V(\xi) \leq 1\}$ , this

- If there exists a positive definite function V such that  $V(\xi(k)) \leq 1$ implies  $V(\xi(k+1)) \le 1$  then this function can be used to establish the stability of the system.
- This Lyapunov function, V, defines the ellipsoid  $\{\xi | V(\xi) \le 1\}$ , this ellipsoid plays an important role for the stability preservation at the code level.

Annotated with assertions in the Hoare style we get

$$\mathbf{x}_c = \begin{cases} pre2 \\ A_c \mathbf{x}_c + B_c y_c \\ post2 \end{cases}.$$

- To use ellipsoids to formally specify bounded input, bounded state stability in.
- Typically, an instruction S would be annotated in the following way:

$$\{x \in \mathcal{E}_P\} \ y = Ax + b \ \{y - b \in \mathcal{E}_Q\} \tag{1}$$

# An ellipsoid-aware Hoare logic

- To use ellipsoids to formally specify bounded input, bounded state stability in.
- Typically, an instruction S would be annotated in the following way:

$$\{x \in \mathcal{E}_P\} \ y = Ax + b \ \{y - b \in \mathcal{E}_Q\} \tag{1}$$

where the pre- and post- conditions are predicates expressing that the variables belong to some ellipsoid, with

$$\mathcal{E}_n = \{x : \mathbb{R}^n | x^T P^{-1} x \leq 1\} \text{ and } Q = APA^T.$$

## An ellipsoid-aware Hoare logic

The mathematical theorem that guarantees the relations is:

#### **Theorem**

If M, Q are invertible matrices, and  $(x-c)^T Q^{-1}(x-c) \le 1$  and y = Mx + bthen  $(u - b - Mc)^T (MQM^T)^{-1} (y - b - Mc) \le 1$ 

We will refer to it as the *ellipsoid affine combination theorem*.

### Verification conditions

# A Matlab program

```
1: A = [0.4990, -0.0500]
          0.0100, 1.0000];
2: C = [-564.48, 0];
3: B = [1:0]:D = 1280:
4: x = zeros(2,1);
    while 1
   y = fscanf(stdin, "%f");
    y = \max(\min(y,1),-1);
     u = C*x + D*y;
     fprintf(stdout, "%f\n",u)
10:
     x = A*x + B*y;
11: end
```

```
\{true\}
      x = zeros(2.1)
\{x \in \mathcal{E}_P\}.
      while 1
\{x \in \mathcal{E}_P\}
6: v = fscanf(stdin, "%f")
\{x \in \mathcal{E}_{P}\}
      v = max(min(v,1),-1);
 x \in \mathcal{E}_P, y^2 \leq 1
    u = C*x+D*y
\{x \in \mathcal{E}_{P}, u^{2} \leq 2(CP^{-1}C^{T} + D^{2}), y^{2} \leq 1\}
9: fprintf(stdout."%f\n".u)
\{x \in \mathcal{E}_{P}, y^{2} < 1\}
\{Ax + By \in \mathcal{E}_P, y^2 \le 1,
u^2 < 2(CP^{-1}C^T + D^2)
9: fprintf(stdout, "%f\n",u)
\{Ax + By \in \mathcal{E}_P, y^2 \leq 1\}
10: x = A*x + B*v;
\{x \in \mathcal{E}_{\mathcal{P}}\}
11:end
{false}
```

- Now that we know the annotations that we want to generate on the code, we have to find a concrete way to express them on actual C code.
- The ANSI/ISO C Specification Language (ACSL) allows its user to specify the properties of a C program within comments,
- This language was proposed as part of the Frama-C platform,

- The ANSI/ISO C Specification Language (ACSL) allows its user to specify the properties of a C program within comments,
- This language was proposed as part of the Frama-C platform,

- Now that we know the annotations that we want to generate on the code, we have to find a concrete way to express them on actual C code.
- The ANSI/ISO C Specification Language (ACSL) allows its user to specify the properties of a C program within comments,
- This language was proposed as part of the Frama-C platform,

## **Verification conditions**



Figure 2: Verification

- We outline the axiomatization in ACSL to fit our needs, which consist of expressing ellipsoid-based Hoare triples over C code.
- We first present the axiomatization of linear algebra elements in ACSI
- Then we present the Hoare triple annotations in ACSL and the POs generated by them.

- We outline the axiomatization in ACSL to fit our needs, which consist of expressing ellipsoid-based Hoare triples over C code.
- We first present the axiomatization of linear algebra elements in ACSL.
- Then we present the Hoare triple annotations in ACSL and the

- We first present the axiomatization of linear algebra elements in ACSL.
- Then we present the Hoare triple annotations in ACSL and the POs generated by them.

//@ type matrix; type vector

- With these abstract types, basic matrix operations and properties

- The following abstract types are declared:
  - //@ type matrix; type vector
- With these abstract types, basic matrix operations and properties
  - are introduced @ logic real mat\_select(matrix A, integer i, integer
    - logic integer mat\_row(matrix A);
  - @ logic integer mat\_col(matrix A);

- The multiplication of a matrix with a vector is defined with function  $vect_mult(matrix A, vector x)$ , which returns a vector.
- Addition and multiplication of 2 matrices, multiplication by a scalar,

- The multiplication of a matrix with a vector is defined with function  $vect_mult(matrix A, vector x)$ , which returns a vector.
- Addition and multiplication of 2 matrices, multiplication by a scalar, and inverse of a matrix are declared as matrix types

```
/*@ axiom mat_inv_select_i_eq_j:
\emptyset \forallmatrixA, integer i, j;
  is_invertible(A) && i == j ==>
  mat\_select(mat\_mult(A, mat\_inverse(A)), i, j) = 1
  axiom mat_inv_select_i_dff_j:
\emptyset \forallmatrixA, integer i, j;
0 is_invertible(A) \&\& i! = j ==>
  mat\_select(mat\_mult(A, mat\_inverse(A)), i, j) = 0
0*/
```

```
//@ predicate in_ellipsoid(matrix P, vector x);
```

```
//@ logic matrix mat_of_array{L}(float *A, integer row.
```

```
//@ predicate in_ellipsoid(matrix P, vector x);
```

mat\_of\_array or vect\_of\_array, is used to associate an ACSL matrix type to a C array.

```
//@ logic matrix mat_of_array{L}(float *A, integer row,
integer col);
```

```
// @ axiom mat_of_array_select:
@ forall float *A; forall integer i, j, k, l;
@ mat_select(mat_of_array(A, k, l), i, j) == A[l*i+j];
```

- The key word requires is used to introduce the pre-conditions of
- //@ require P

- The key word requires is used to introduce the pre-conditions of the triple, and the key word ensures is used to introduce its post-conditions.
- //@ require P

- The paramount notion in ACSL is the function contract.
- The key word requires is used to introduce the pre-conditions of the triple, and the key word ensures is used to introduce its post-conditions.
- //@ require P //@ ensures R

- The paramount notion in ACSL is the function contract.
- The key word requires is used to introduce the pre-conditions of the triple, and the key word ensures is used to introduce its post-conditions.
- //@ require P //@ ensures R

Stability and correctness

- We need to deal with memory issues. In general, we want all functions to be called with valid pointers as arguments, i.e., valid array and therefore valid matrices.
- This is what the built-in ACSL predicate valid does. The followings

```
/*0 requires (valid(a + (0..3)));
  void zeros_2x2(float* a)
```

- We need to deal with memory issues. In general, we want all functions to be called with valid pointers as arguments, i.e., valid array and therefore valid matrices.
- This is what the built-in ACSL predicate valid does. The followings snippet shows how the contract can be written using mat\_select and mat\_of\_array,

```
void zeros_2x2(float* a)
```

 This is what the built-in ACSL predicate valid does. The followings snippet shows how the contract can be written using mat\_select and mat\_of\_array,

Introduction

Stability and correctness

```
Ac = mat_of_2x2_scalar(0.449, -0.05, 0.01, 1.);
  P = mat_of_2x2_scalar(1.5325, 10.0383, 10.0383, 507.2450);
  Q = mat_mult(mat_inv(transpose(Ac)),mat_mult(P,mat_inv(Ac)));
 requires (valid(xc + (0..1)));
 requires (valid(yc + (0..1)));
 requires in_ellipsoid(P,vect_of_array(xc,2));
@ ensures in_ellipsoid(Q,vect_of_array(yc,2));*/
void inst2(float* xc, float* yc)
 yc[0] = 0.449*xc[0] + -0.05*xc[1];
yc[1] = .01*xc[0] + 1.*xc[1];
```

- Errors due to floating point approximations are thus not taken into account.
- The Frama-C toolset offers the possibility of making this assumption by including 'JessieFloatModel(Math)'.

Introduction

 The Frama-C toolset offers the possibility of making this assumption by including 'JessieFloatModel(Math)'.

Introduction

- Frama-C tools do not require an annotation at each line as proposed by Hoare.

- Frama-C tools do not require an annotation at each line as proposed by Hoare.
- They rather rely weakest precondition calculus.
- The proof obligation (PO) is then  $P \implies wp(S,Q)$  where P is the

- They rather rely weakest precondition calculus.
- The proof obligation (PO) is then  $P \implies wp(S,Q)$  where P is the pre-condition.

- On the one hand, using ACSL and the Frama-C framework, we were able to generate POs about the ellipsoid predicate.
- Frama-C tools even make it possible to express the PO in PVS.

- On the one hand, using ACSL and the Frama-C framework, we were able to generate POs about the ellipsoid predicate.
- Frama-C tools even make it possible to express the PO in PVS, along with a complete axiomatisation in PVS of C programs semantics.

```
in_ellipsoid?(P_0, vect_of_array(xc, 2, floatP_floatM))))
in_ellipsoid?(Q, vect_of_array(yc, 2, floatP_floatM0))
vect_of_array(yc, 2, floatP_floatM0)'vect =
Ac * vect_of_array(xc, 2, floatP_floatM)'vect
```

#### For both POs.

- we must first interpret the uninterpreted types and to prove the properties that are defined axiomatically.
- We must then discharge the verification conditions. This is done

```
in_ellipsoid?(P_0, vect_of_array(xc, 2, floatP_floatM))))
in_ellipsoid?(Q, vect_of_array(yc, 2, floatP_floatM0))
                                                             PVS
vect_of_array(yc, 2, floatP_floatM0)'vect =
Ac * vect_of_array(xc, 2, floatP_floatM)'vect
```

#### For both POs.

- we must first interpret the uninterpreted types and to prove the properties that are defined axiomatically.
- We must then discharge the verification conditions. This is done by using PVS and a linear algebra extension of it.

```
Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
 [Vector[dom]->Vector[codom]] #]
L(n,m)(f) = (\# rows:=m, cols:=n, matrix:=\lambda(j,i):
f'mp(e(n)(i))(j) #)
T(n,m)(A) = (\# dom:=n, codom:=m, mp:=\lambda(x,j): \sum_{i=0}^{A'cols-1} (\lambda(i):=n)
A'matrix(j,i)*x(i) #))
```

```
Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
              [Vector[dom] -> Vector[codom]] #]
L(n,m)(f) = (\# rows:=m, cols:=n, matrix:=\lambda(j,i):
     f'mp(e(n)(i))(j) #)  \texttt{T(n,m)(A) = (\# dom:=n, codom:=m, mp:=} \lambda(\texttt{x,j}) \colon \Sigma_{\texttt{i}=0}^{\texttt{A'cols}-1}(\lambda(\texttt{i}) \colon \Sigma_\texttt{i}=0)^{\texttt{A'cols}-1}(\lambda(\texttt{i}) \colon \Sigma_\texttt{i}=0)^{
        A'matrix(j,i)*x(i) #))
```

```
Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
     [Vector[dom]->Vector[codom]] #]
L(n,m)(f) = (\# rows:=m, cols:=n, matrix:=\lambda(j,i):
  \begin{array}{l} \texttt{f'mp(e(n)(i))(j) \#)} \\ \texttt{T(n,m)(A)} = (\# \ \texttt{dom:=n, codom:=m, mp:=} \lambda(\texttt{x,j}) \colon \ \Sigma_{\texttt{i}=0}^{\texttt{A'cols}-1}(\lambda(\texttt{i}) \colon \Sigma_\texttt{i}=0) \end{array} \right) 
   A'matrix(j,i)*x(i) #))
  Matrix_inv(n):TYPE = {A: Square | squareMat?(n)(A) and
```

Heber Herencia-Zapana,, Romain Jobredea

bijective?(n)(T(n,n)(A))

```
Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
[Vector[dom] -> Vector[codom]] #]
```

```
L(n,m)(f) = (\# rows:=m, cols:=n, matrix:=\lambda(j,i):
  \begin{array}{l} \texttt{f'mp(e(n)(i))(j) \#)} \\ \texttt{T(n,m)(A)} = (\# \ \texttt{dom:=n, codom:=m, mp:=} \lambda(\texttt{x,j}) \colon \ \Sigma_{\texttt{i}=0}^{\texttt{A'cols}-1}(\lambda(\texttt{i}) \colon \Sigma_\texttt{i}=0) \end{array} \right) 
     A'matrix(j,i)*x(i) #))
```

- Matrix\_inv(n):TYPE = {A: Square | squareMat?(n)(A) and bijective?(n)(T(n,n)(A))
- inv(n)(A) = L(n,n)(inverse(n)(T(n,n)(A)))

```
ellipsoid_affine_comb: LEMMA \forall (n:posnat, Q, M: SquareMat(n)
y, b, c: Vector[n]):
bijective?(n)(T(n,n)(Q)) AND bijective?(n)(T(n,n)(M))
AND (x-c)*(inv(n)(Q)*(x-c)) \le 1
AND y=M*x + b
(y-b-M*c)*(inv(n)(M*(Q*transpose(M)))*(y-b-M*c)) \le 1
```

- We have developed a PVS library that is able to reason about these properties.
- We now must link these two worlds: ACSL ellipsoids predicate

- We have developed a PVS library that is able to reason about these properties.
- We now must link these two worlds: ACSL ellipsoids predicate proof obligation in PVS must be connected with with our linear algebra PVS library.

- Theory interpretation is a logical technique for relating one axiomatic theory to another.
- Interpretations can be used to show:
- An axiomatically defined specification is consistent
- or that a axiomatically defined specification captures its intended models.

# Verification conditions and theory interpretation

- Theory interpretation is a logical technique for relating one axiomatic theory to another.
- Interpretations can be used to show:
- An axiomatically defined specification is consistent

- Theory interpretation is a logical technique for relating one axiomatic theory to another.
- Interpretations can be used to show:
- An axiomatically defined specification is consistent
- or that a axiomatically defined specification captures its intended models.

```
IMPORTING acsl_theory{{ matrix := Matrix,
vector := Vector_no_param,
vect_length := LAMBDA (v:Vector_no_param): v'length,
mat_row := LAMBDA (M:Matrix): M'rows,
mat_col := LAMBDA (M:Matrix): M'cols,
mat_mult := *,
in_ellipsoid := in_ellipsoid?
mat_inv := LAMBDA (M:Matrix): IF square?(M) THEN IF
bijective?(M'rows)(T(M'rows,M'rows)(M))
THEN inv(M'rows)(M)
ELSE M
ENDIF
ELSE M ENDIF }}
```

in\_ellipsoid?(P\_0, vect\_of\_array(xc, 2, floatP\_floatM))
IMPLIES
in\_ellipsoid?(Q, vect\_of\_array(yc, 2, floatP\_floatM0))

```
bijections:LEMMA bijective?(2)(T(2,2)(P_0)) AND bijective?(2)(T(2,2)(Ac))
```

```
where Ac = mat\_of\_2x2\_scalar(0.449, -0.05, 0.01, 1.) and P = mat\_of\_2x2\_scalar(1.5325, 10.0383, 10.0383, 507, 2450)
```

bijections:LEMMA
bijective?(2)(T(2,2)(P\_0)) AND bijective?(2)(T(2,2)(Ac))

where  $Ac = mat\_of\_2x2\_scalar(0.449, -0.05, 0.01, 1.)$  and  $P = mat\_of\_2x2\_scalar(1.5325, 10.0383, 10.0383, 507.2450)$ 

# Conclusions

- We have described a global approach to validate stability properties of C code implementing controllers.

- We have defined an ACSL extension to describe predicates over

## Conclusions

- We have described a global approach to validate stability properties of C code implementing controllers.
- Our approach requires the code to be annoted by Hoare triples,
- We have defined an ACSL extension to describe predicates over

# Conclusions

- We have described a global approach to validate stability properties of C code implementing controllers.
- Our approach requires the code to be annoted by Hoare triples,
- proving the stability of the control code using ellipsoid affine combinations
- We have defined an ACSL extension to describe predicates over

- We have described a global approach to validate stability properties of C code implementing controllers.
- Our approach requires the code to be annoted by Hoare triples,
- proving the stability of the control code using ellipsoid affine combinations
- We have defined an ACSL extension to describe predicates over the code, as well as a PVS library able to manipulate these predicates.

- Theory interpretation maps proof obligations generated from the code to their equivalent in this PVS library.
- This mapping allows to discharge POs using the ellipsoid affine combination theorem implemented in PVS.
- Linear algebra PVS libraries can be used for the formal specification of control theory properties

Stability and correctness

Introduction

- Theory interpretation maps proof obligations generated from the code to their equivalent in this PVS library.
- This mapping allows to discharge POs using the ellipsoid affine combination theorem implemented in PVS.
- Linear algebra PVS libraries can be used for the formal

- Theory interpretation maps proof obligations generated from the code to their equivalent in this PVS library.
- This mapping allows to discharge POs using the ellipsoid affine combination theorem implemented in PVS.
- Linear algebra PVS libraries can be used for the formal specification of control theory properties

- Theory interpretation maps proof obligations generated from the code to their equivalent in this PVS library.
- This mapping allows to discharge POs using the ellipsoid affine combination theorem implemented in PVS.
- Linear algebra PVS libraries can be used for the formal specification of control theory properties

### The authors would like to thank

• A. Goodloe for his suggestion of the use of the Frama-C toolset and his help in axiomatising of linear algebra in ACSL.